Cuestionario

Por favor lea y conteste las dos secciones que se muestran a continuación. Sus respuestas a este cuestionario no afectarán en la decisión de su participación en el taller, exceptuando las condiciones indicadas en la sección de Problemas.

Método de entrega: Todas sus respuestas deben quedar contenidas en un solo archivo PDF (no se aceptarán otros formatos como Word o JPG). Subir el archivo utilizando el botón que se encuentra en esta página.

En caso de encontrar cualquier problema con el funcionamiento de la página, o para consultar cualquier duda relativa al taller, puedes escribir a tpmc26@math.cinvestav.edu.mx.

Preguntas

Responda las siguientes preguntas.

- 1. ¿Cuáles de las materias que has cursado te han gustado más?
- 2. Menciona algún resultado o ejemplo de alguno de los cursos que has llevado, que te haya gustado. Explica por qué te gusta.

Problemas

Conteste al menos cuatro de los siguientes problemas. En cada problema, explique sus razonamientos de forma clara y ordenada, aún si no es capaz de resolver alguno de ellos por completo, y en dicho caso explique lo que intentó y las dificultades que encontró.

Los problemas se deben contestar de forma independiente y está estrictamente prohibido utilizar herramientas de inteligencia artificial generativa (e.g. ChatGPT, Google Gemini, Claude, Deepseek). Es válido consultar libros. En caso de haber solicitudes copiadas, resueltas en equipo o generadas por inteligencia artificial, serán anuladas.

1. La sucesión de Fibonacci f_1, f_2, f_3, \ldots , está definida por $f_1 = f_2 = 1$,

$$f_n = f_{n-1} + f_{n-2},$$

para $n=3,4,5,\ldots$ Así la sucesión comienza como:

Sea

$$Q = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

a) Pruebe que:

$$Q^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}$$

para n = 2, 3, 4, ...

b) Establezca la identidad

$$f_{3n} = f_n^3 + f_{n+1}^3 - f_{n-1}^3$$

para n = 2, 3, 4, ...

2. Dada la función f(t) derivable en el intervalo [0,1], tal que $0 < f'(t) \le 1$ y f(0) = 0, demuestra que para toda $x \in [0,1]$ se cumple que

$$\left(\int_0^x f(t)dt\right)^2 \ge \int_0^x \left(f(t)\right)^3 dt.$$

- 3. Halle el cono de volumen máximo inscrito en una esfera de radio R.
- 4. Sea A una matriz real 4×4 tal que -1, 1, -2, y 2 son sus valores propios. Sea $B = A^4 5A^2 + 5I$. Establezca si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta.
 - a) $\det(A+B)=0$.
 - b) det(B) = 1.
 - c) Tr(A + B) = 1.
 - d) $\operatorname{Tr}(A B) = 0$.
 - e) Tr(A + B) = 4.
- 5. Considere a $V = \mathbb{Z}_3^n$ como espacio vectorial sobre \mathbb{Z}_3 . ¿Cuántos subespacios de dimensión 1 tiene V? Justifique su respuesta.
- 6. Demuestre lo siguiente:
 - a) Un número es divisible entre dos si su último dígito es par.
 - b) Un número es divisible entre tres si la suma de sus dígitos es divisible entre tres.
 - c) Un número es divisible entre seis si es divisible entre dos y tres.
- 7. Halle todos los números $a \in \mathbb{R}$ tales que:

$$x^2 + axy + y^2 > 0.$$